

Tobacco Alkaloid Genetics (TAG) Task Force Annual Report 2020

Coordinator: Yongfeng Guo, TRI-CAAS, China

CORESTA Congress Online

October 2020

- 1. To understand the genetics that control alkaloid formation in tobacco plants.
- 2. To understand the feasibility of conventional and nonconventional breeding techniques to modify alkaloid formation in tobacco plants.
- 3. To understand the impact of tobacco alkaloid levels on leaf production and quality.

TAG Task Force

Progress

Project No.	Activity	Status	Time
140	Initiation	Completed	March 2017
	Soliciting participants	Completed	January 2018
	Breaking down the report into 9 subtitles	Completed	February 2018
	Assignment of subtitles to participants (9/12)	Completed	April 2018
	Collecting writings	Completed	October 2018
	First draft	Completed	April 2019

TAG Task Force

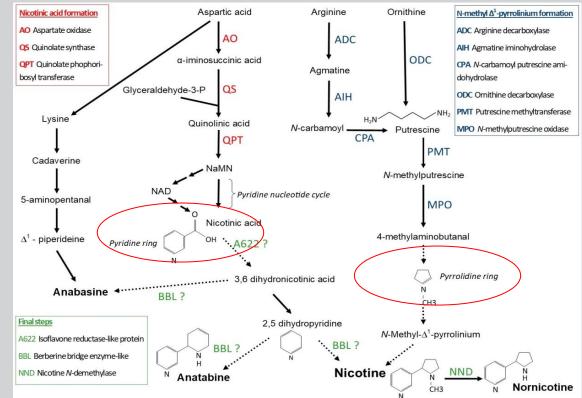
Progress

Project No.	Activity	Status	Time
140	Publishing the report in a peer-reviewed journal (accepted by the eBook "Studies in Natural Products Chemistry" (Bioactive Natural Products) published by ELSEVIER SCIENCE PUBLISHERS – AMSTERDAM)	Ongoing	October 2020
	Final report	On-going	October 2020

List of participants

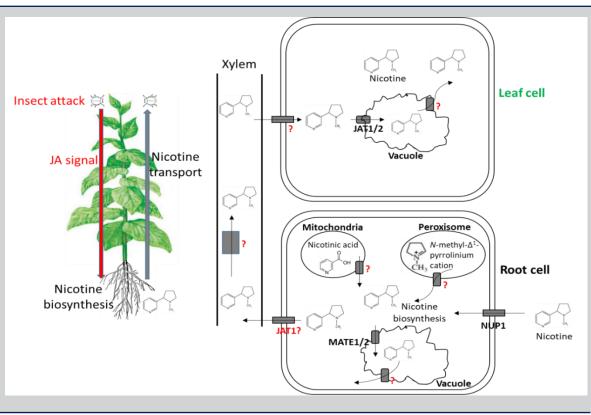
- Ernie Hiatt (RJ Reynolds, USA), Tijs Gilles (BAT, UK), Irving J. Berger (BAT, Brazil), Alkaloid biosynthesis
- Christelle Bonnet (JTI, Switzerland), Regulatory mechanisms of alkaloid accumulation
- Chengalrayan Kudithipudi (Altria Client Service, USA), Regulatory mechanisms of alkaloid accumulation
- Ramsey S. Lewis (NC State University, USA), Traditional breeding for low alkaloid tobacco
- Hongzhi Shi, Mengyue Zhang (Henan Agricultural University, China), Marcos Lusso (Altria Client Services, USA), Leaf production and quality affected by low nicotine tobacco production
- Sarunava Patra, Shengming Yang (University of Kentucky, USA), Transportation of alkaloids
- Xue Zhao, Hongbo Zhang (Tobacco Research Institute, CAAS, China), Transportation of alkaloids
- François Dorlhac de Borne (Imperial Tobacco, France), Introduction
- Yongfeng Guo, Liuying Wen (Tobacco Research Institute, CAAS, China), Dongmei Xu (Altria Client Services, USA), Organization

Structure of the report


- Title: Molecular regulation and genetic manipulation of alkaloid accumulation in tobacco plants
- Abstract
- Introduction
- Alkaloid biosynthesis in tobacco
- Transportation of alkaloids between cells and within the plant
- Regulatory mechanisms of alkaloid accumulation in tobacco
- Development and use of low alkaloid tobacco
- Future prospects for ultra-low alkaloid tobacco

Alkaloid biosynthesis

- 1. Formation of nicotinic acid (the pyridine ring);
- Formation of N-methyl- Δ1pyrrolinium cation (the pyrrolidine ring);
- 3. Condensation of a pyridine ring and a pyrrolidine ring (A662 and BBLs);
- 4. Nornicotine biosynthesis;
- 5. Anabasine biosynthesis;
- 6. Anatabine biosynthesis;


Figure by Christelle Bonnet

Alkaloid transportation

- 1. Multidrug and toxic compound extrusion proteins NtMATE 1 and NtMATE2;
- 2. Jasmonate inducible alkaloid transporters JAT1 and JAT2;
- 3. Purine uptake permease-like transporter NUP1;

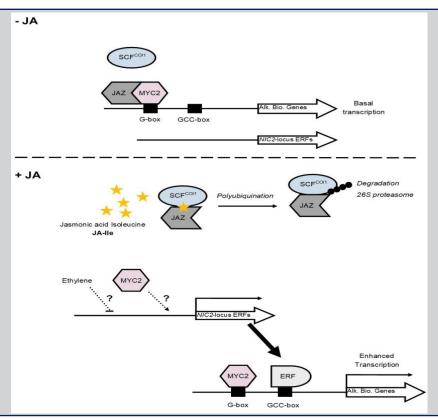


Figure by Shengming Yang

Regulatory mechanisms

- **1.** The Nic loci and ERF transcription factors;
- 2. The jasmonate pathway and MYC2-like bHLH transcription factors;
- 3. Induction of JA-mediated nicotine accumulation by senescence and abiotic stresses;
- 4. Inhibitory effects of ethylene and auxin on nicotine biosynthesis;
- 5. Small and long non-protein-coding RNAs in nicotine biosynthesis;

Figure by Christelle Bonnet

TAG TF Report 2020 Congress Online – 201012

Low alkaloid tobacco

- 1. Low alkaloid tobacco developed by traditional breeding;
- 2. Low alkaloid tobacco developed by genetic engineering;
- 3. Reduction of alkaloid accumulation through agronomic practices.

	Variability	Mechanism	Nicotine	Sample Type	Reference
ow alkaloid tobacco	Туре		(mg/g)		
eveloped by traditional	Wild type	Nic1Nic2	15 – 45	Composite cured leaf sample	Lewis 2018 [121]
eeding;	Naturally-	nic1/nic2 (also	$2.0 - 2.5^{b}$	Composite cured leaf sample ^c	Legg and Collins 1971 [118]
ow alkaloid tobacco	Occurring	known as a/b)			
eveloped by genetic			2.99	Composite cured leaf sample	Lewis et al. 2015 [41]
igineering;			4.52	Composite cured leaf sample	Lewis 2016 (unpublished data)
igineering,	Naturally-	CYP82E4 (nicotine	6.45 - 8.33	Fourth leaf from the top	Lewis et al. 2008 [51]
eduction of alkaloid	Occurring	demethylase)			
cumulation through	Transgenic	NtQPT1 Antisense	1.44	Composite cured leaf sample	Vector Tobacco Ltd. 2001 [22]
pronomic practices.	Transgenic	NtPMT Family RNA	0.60	Composite cured leaf sample	Lewis 2014 (unpublished data)
		Interference			
	Transgenic	NtPMT Family Co-	2.20	Composite cured leaf sample	Lewis 2014 (unpublished data)
		Suppression			
	Transgenic	NtBBL Family RNA	4.14	Composite cured leaf sample	Lewis et al. 2015 [41]
		Interference			
Table by Pameou Lowic	Knockout	NtBBL Family	4.43	Composite cured leaf sample	Lewis 2016 (unpublished data)
Table by Ramsey Lewis	Mutation	Inactivation			

Centre de Coopération pour les Recherches Scientifiques Relatives au Tabac

2020 Congress Online - 201012

TAG TF Report

Cooperation Centre for Scientific Research Relative to Tobacco

Recent progress - omics

- 1. Pyridine alkaloid content in Nicotiana genus correlates with sectional classification.
- 2. Myosmine was detected in 16 *Nicotiana* species.
- 3. Noctiflorae and Suaveolentes sections accumulated above average levels of anabasine.
- 4. Clustering of *Nicotiana* gene expression reflected sectional classification.
- 5. Correlation of gene expression with alkaloid accumulation was evident.

Nicotiana Genus Species

UHPLC-MS Analysis of Pyridine Alkaloids

K. P. Kaminski et al., Alkaloid chemophenetics and transcriptomics of the Nicotiana genus. Phytochemistry (2020) 177:112424.

Centre de Coopération pour les Recherches Scientifiques Relatives au Tabac	PI PI
Cooperation Centre for Scientific Research Relative to Tobacco	P!

CS	Identifier AO, chloroplastic-like	beta leaf normicotine to nicotine content ratio beta with leaf gene expression	total nicotine content (leaf and root)	total anatabine content (leaf and root) of with root gene expression	root antatabine to nicotine and normicotine of ratio with root gene expression	total anabasine content (leaf and root) by with root gene expression	total alkaloids content leaf to root ratio	
MI102810	AO, chloroplastic-like	0,01	0,47	0,15	-0,04	-0,14	0,51	
MI026593	QS, chloroplastic-like	-0,22	0,09	0,32	0,41	0,38	-0,05	
MI015180	QS, chloroplastic-like	0,02	0,48	0,11	-0,10	-0,12	0,54	
MI054356	QPT1	-0,01	-0,14	0,01	0,17	0,49	-0,13	
MI049645	QPT2	-0,05	0,45	0,24	0,15	0,21	0,37	
MI080136	A622 IRL1	-0,05	0,31	0,29	0,26	0,29	0,24	
MI067191	A622-like IRL2	-0,02	0,29	0,28	0,17	0,18	0,32	
MI107457	BBLa	-0,05	0,02	-0,14	-0,15	-0,12	0,08	
MI093959	BBLb or BBLe	-0,03	-0,10	0,27	0,26	-0,04	-0,06	
MI022935	BBLc	0,02	-0,01	-0,06	-0,11	-0,08	-0,03	
MI017693	BBLd.1	0,76	-0,08	-0,08	-0,10	0,53	-0,06	
MI024291	BBLd.2	0,33	-0,08	0,06	0,11	0,41	-0,12	1
MI088802	CYP82E10	0,03	-0,06	0,10	0,01	-0,13	-0,12	1
MI041538	CYP82E4	0,31	-0,17	0,11	0,07	0,12	-0,20	
MI039438	CYP82E5	0,34	-0,15	0,39	0,24	-0,12	-0,13	
MI041476	CYP82E21	0,48	-0,15	-0,15	-0,07	0,07	-0,11	
MI094168	ADC	-0,01	-0,09	0,09	0,05	-0,12	-0,12	
MI033325	ADC	0,12	0,34	-0,12	-0,26	-0,16	0,28	
MI022407	ADC	0,04	-0,20	-0,26	-0,15	-0,04	-0,15	
MI115232	ADC	n/a	-0,03	-0,11	-0,09	-0,09	-0,08	
MI100932	AD-like isoform X1	-0,07	-0,20	-0,08	0,09	0,06	-0,27	
MI077481	AD-like	0,16	-0,05	0,23	0,15	-0,14	0,03	
MI040820	CAPA	-0,06	0,01	0,16	0,11	-0,07	0,07	
MI090808	CAPA-like	-0,15	-0,06	-0,01	0,15	0,03	-0,07	
MI012805	ODC	0,20	0,48	-0,05	-0,26	-0,13	0,44	
MI026344	ODC-like	0,19	0,12	0,08	0,02	0,11	-0,01	
MI047375	SPDS isoform X1	-0,02	-0,09	-0,11	-0,04	0,02	-0,17	
MI115725	SPDS	0,20	0,03	0,21	0,09	0,04	0,02	
MI067235	SPDS 1	0,18	-0,11	0,08	0,17	0,36	-0,10	
MI025833	SPDS-like or SPS-like	-0,01	-0,16	-0,19	-0,07	0,05	-0,24	
MI015863	SPS	0,26	0,18	0,13	-0,13	0,10	0,15	
MI076225	PMT1	0,06	0,42	0,01	-0,15	-0,19	0,47	
MI019447	PMT2	0,06	0,50	-0,05	-0,24	-0,19	0,50	
MI076224	PMT3	-0,02	0,28	0,06	-0,07	-0,15	0,45	
MI019443	PMT4	0,00	0,27	0,00	-0,14	-0,12	0,14	
MI098879	MPO1	0,07	0,06	0,16	0,26	0,31	0,00	
MI036737	MPO2	0,17	-0,02	0,10	0,25	-0,11	-0,05	
MI080131	MATE1	0,17	0,16	0,33	0,43	0,22	0,03	
MI067188	MATE2	0,16	0,49	0,19	0,08	0,06	1 10,50	
MI076899	NUP1	-0,01	-0,19	0,05	0,08	-0,12	-0,24	

PN PN PN PN PN

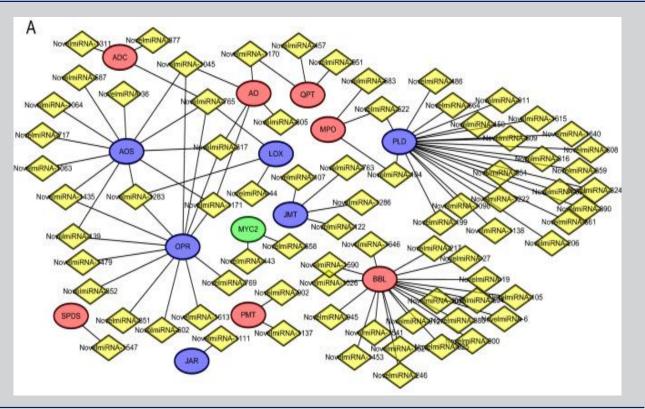
PN PN PN PN

Alkaloid content of *Nicotiana* species in leaves and roots. Total alkaloid content is shown together with relative standard error (RSE), while percentage compositions are shown with simple standard error (SE). Specie name is followed by their botanical authority name abbreviation. A star next to the species name indicates that it did not flower at the time of harvest. The number of chromosomes is shown next to the species name indicates that it did not flower at the time of harvest. The number of chromosomes is shown next to the species name indicates that it did not flower at the time of harvest. The number of chromosomes is shown next to the species name indicates that it did not flower at the time of harvest.

		Total alkaloid	content (µg/g)	± RSE (%)	Leave	es														
Section	Species (chr number - 2n)				Nicot	ine		Norni	cotine	•	Anaba	asine		Anata	bine		Cotinine	Myosi	mine	
	Nicotiana genus - Solanaceae family				% of	total	alkaloid	content	± SE											
Alatae																				
	N. alata Link & Otto (18)	749	±	4	100			nd			Nd			nd			nd	nd		
	N. bonariensis Lehm. (18)	942	±	17	100			nd			Nd			nd			nd	nd		
	N. forgetiana hort. Ex Hemsl. (18)	429	±	10	100			nd			Nd			nd			nd	nd		
	N. langsdorfü Wienmann (18)	691	±	3	100			nd			Nd			nd			nd	nd		
	N. longiflora Cav.* (20)	596	±	13	100			nd			nd			nd			nd	nd		
	N. plumbaginifolia Viv. (20)	2270	±	36	65	±	11	30	±	15	5.2	±	3.7	nd			nd	nd		
	N. xsanderae W.Watson PI555579 (18)	526	±	15	100			nd			nd			nd			nd	nd		
	N. xsanderae W.Watson PI555576 (18)	798	±	9	91	±	7.1	nd			8.6	±	7.1	nd			nd	nd		
Nicotia	a																			
	N. tabacum L. (48)	12,500	±	14	92	±	0.27	5.1	±	0.28	nd		_	2.6	±	0.23	nd	nd		
Noctiflo	rae																			
	N. glauca Graham (24)	1300	±	13	3.7	±	3.2	nd			96	±	3.2	nd			nd	nd		
	N. noctiflora Hook. (24)	5520	±	8	11	±	1	27	±	0.36	56	±	0.57	6.2	±	0.32	nd	nd		
	N. petunioides (Griseb.) Millán (24)	1660	±	33	41	±	5.5	26	±	18	33	±	24	nd			nd	nd		
Panicul	atae										\sim									
	N. benavidesii Goodsp.* (24)	4440	±	16	81	±	0.92	1.4	±	0.99	18	±	0.07	nd			nd	nd		
	N. knightiana Goodsp. (24)	4690	±	25	92	±	1.1	6.9	±	0.31	1.5	±	1.2	nd			nd	nd		
	N. paniculata L. (24)	2230	±	16	97	±	2.4	2.9	±	2.4	nd			nd			nd	nd		
	N. solanifolia Walp. (24)	33,600	±	36	2.3	±	0.041	53	±	0.66	43	±	0.74	0.23	±	0.16	nd	2	±	0.038
Petunoi	des																			
	N. acuminata Hook. (24)	615	±	10	100			nd			nd			nd			nd	nd		
	N. acuminata var. multiflora Reiche (24)	851	±	19	84	±	13	nd			16	±	13	nd			nd	nd		
	N. attenuata Steud. (24)	1410	±	11	100			nd			nd			nd			nd	nd		
	N. corymbosa Remy (24)	3240	±	34	100			nd			nd			nd			nd	nd		
	N. linearis Phil. (24)	1080	±	28	90	±	7	10	±	7	nd			nd			nd	nd		
	N. miersii J.Rémy (24)	2740	±	6	50	±	19	50	±	19	nd			nd			nd	nd		
	N. pauciflora J.Rémy (24)	576	±	24	100		-	nd		-	nd			nd			nd	nd		
	N. spegazzinii Millán (24)	3350	±	25	9.7	±	4.2	89	±	4.5	nd			1.2	±	1	nd	nd		

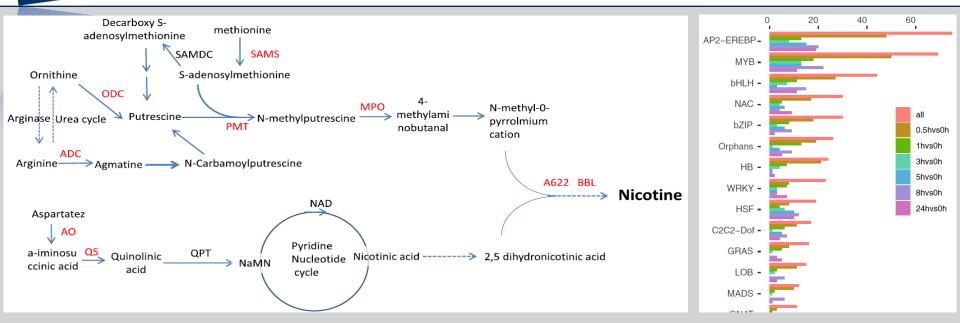
TAG TF Report 2020 Congress Online – 201012 Centre de Coopération pour les Recherches Scientifiques Relatives au Tabac

Cooperation Centre for Scientific Research Relative to Tobacco


TAG TF Report

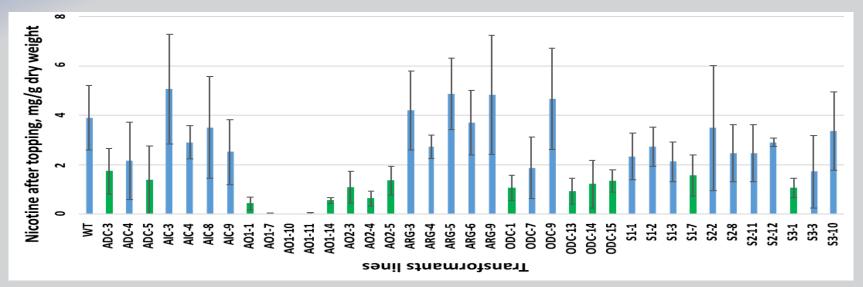
2020 Congress Online - 201012

Recent progress - omics


Analysis of high and low nicotine flue-cured tobacco indicated that 6 nicotine biosynthetic genes and 7 jasmonate pathway genes were predicted to be targeted by 77 miRNA loci.

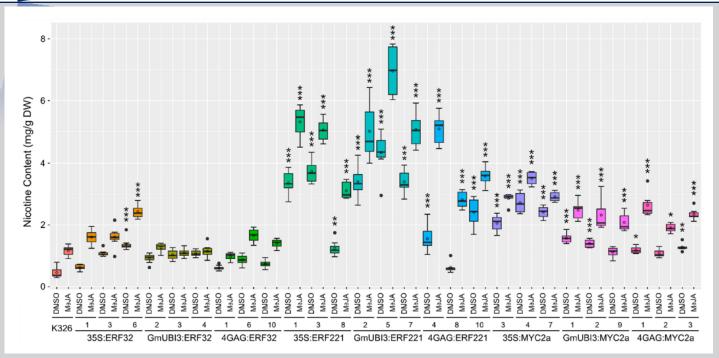
J. Jin et al., Degradome, small RNAs and transcriptome sequencing of a high-nicotine cultivated tobacco uncovers miRNA's function in nicotine biosynthesis. Sci. Rep. (2020), 16;10(1):11751.

Recent progress - omics


Genes involved in biosynthesis and transport of nicotine are up-regulated within 24 h after topping.

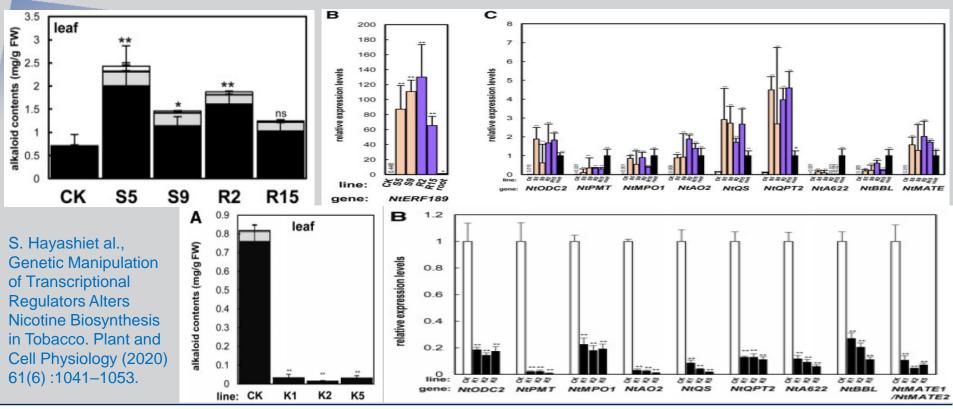
Y. Qin et al., Transcriptome analysis reveals key genes involved in the regulation of nicotine biosynthesis at early time points after topping in tobacco (*Nicotiana tabacum* L.). BMC Plant Biology (2020) 20:30

TAG TF Report 2020 Congress Online – 201012


Downregulation of alkaloid biosynthesis genes ornithine decarboxylase (ODC), arginine decarboxylase (ADC), and aspartate oxidase (AO) resulted in viable plants with a significantly lower nicotine content.

D. H. Martinez et al., Genetic attenuation of alkaloids and nicotine content in tobacco (Nicotiana tabacum). Planta (2020) 251:92.

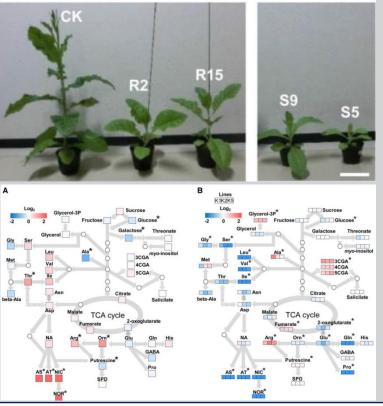
TAG TF Report 2020 Congress Online – 201012



H. Liu et al., Increased Leaf Nicotine Content by Targeting Transcription Factor Gene Expression in Commercial Flue-Cured Tobacco (*Nicotiana tabacum* L.). Genes (Basel) (2019) 10(11): 930.

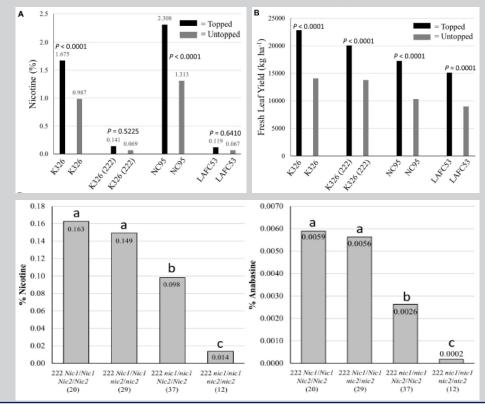
Overexpression of the tobacco *NtERF32*, *NtERF221/ORC1*, and *NtMYC2a* TFs leads to significant increases in nicotine accumulation.

TAG TF Report 2020 Congress Online – 201012



Centre de Coopération pour les Recherches Scientifiques Relatives au Tabac Cooperation Centre for Scientific Research Relative to Tobacco

TAG TF Report 2020 Congress Online – 201012


- 1. Constitutive and leaf-specific overexpression of *NtERF189* increased the accumulation of foliar alkaloids in transgenic tobacco plants but negatively affected plant growth.
- 2. In a knockout mutant of NtERF189 and NtERF199 obtained through CRISPR/Cas9-based genome editing, alkaloid levels were drastically reduced without causing major growth defects.
- 3. NtERF189 and NtERF199 are primary transcriptional regulators of nicotine biosynthesis

- 1. Significant reductions (up to 17-fold) in percent leaf nicotine were observed combined mutations in BBL-a, BBL-b, and BBL-c. The addition of mutations in BBL-d1, BBL-d2, and BBL-e had no additional significant.
- 2. Reduced nicotine levels were associated with reductions in cured leaf yields (up to 29 %) and cured leaf quality (up to 15 %).
- **3.** BBL mutations combined with Nic1 and Nic2 loci exhibited further reductions in percent nicotine (0.014 %).
- 4. Existence of a minor, alternative pathway for nicotine biosynthesis in *N. tabacum*.

R. S. Lewis et al., Genetic and Agronomic Analysis of Tobacco Genotypes Exhibiting Reduced Nicotine Accumulation Due to Induced Mutations in Berberine Bridge Like (BBL) Genes. Front Plant Sci (2020) 11: 368.

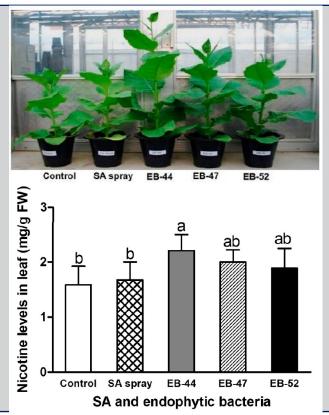
Recent progress – other approaches

Position	Treatments	Alkaloid content	: (%)		Percentag	Percentage of total alkaloids (%)				
		Nicotine	Nornicotine	Anabasine	Anatabine	Total alkaloids	Nicotine	Nomicotine	Anabasine	Anatabine
Upper	Tobacco/tobacco	1.9237 ± 0.02aA	0.0460 ± 0aA	0.0175 ± 0aA	0.0672 ± 0aA	2.0544 ± 0.02aA	93.64	2.24	0.85	3.27
leaf	Tobacco/eggplant without hilling up	0.0999 ± 0cC	0.0037 ± 0cC	0.0087 ± 0cC	-	0.1123 ± 0cC	88.96	3.20	7.84	-
	Tobacco/eggplant with hilling up	0.2742b ± 0B	0.0109 ± 0bB	0.0168 ± 0bB	0.0118 ± 0bB	0.3137±0.01bB	87.41	3.47	5.36	3.76
Middle	Tobacco/tobacco	1.9423 ± 0.03aA	0.0664 ± 0aA	0.0110 ± 0 bB	$0.0714 \pm 0aA$	2.0911 ± 0.03aA	92.88	3.18	0.53	3.41
leaf	Tobacco/eggplant without hilling up	0.1068 ± 0cC	-	0.0094 ± 0cC	-	0.1162 ± 0cC	91.91	-	8.09	-
	Tobacco/eggplant with hilling up	0.3205 ± 0bB	0.0134 ± 0bB	0.0228 ± 0aA	0.0138±0bB	0.3705 ± 0.01bB	86.5	3.62	6.15	3.73

Table 4 Effect of tobacco and eggplant grafting on the chemical composition of cured tobacco Position Treatments Protein Total sugar Reducing sugar Nicotine Total nitrogen Starch $3.05 \pm 0.08cC$ Upper leaf Tobacco / tobacco 1.89 ± 0.03 aA 3.11 ± 0.03 cB 13.89 ± 0.33 bA $19.30 \pm 0.18aA$ $17.17 \pm 0.25aA$ Tobacco / eggplant without hilling up $5.46 \pm 0.05 a A$ $14.15 \pm 0.07 aA$ 18.12 ± 0.47 bB 15.84 ± 0.12 cB 0.10 ± 0.01bB 3.21 ± 0.01aA Tobacco / eggplant with hilling up $14.26 \pm 0.21 aA$ 18.98 + 0.30aA 16.13 ± 0.10 bB 0.27 ± 0.01 bB $3.15 \pm 0.07 bA$ 3.41 ± 0.14 bB Middle leaf Tobacco / tobacco 3.41 ± 0.03 cB 12.27 ± 0.43 bB $15.79 \pm 0.25 aA$ 2.00 ± 0.04aA 2.34 ± 0.03bB $16.87 \pm 0.44aA$ Tobacco / eggplant without hilling up 5.29 ± 0.22aA 13.60 ± 0.30aA 14.88 ± 0.02bB 12.77 ± 0.18 bB 0.11 ± 0.01 bB $2.45 \pm 0.05aA$ Tobacco / eggplant with hilling up 0.31 ± 0.02bB $2.49 \pm 0.08aA$ 3.67 ± 0.16bB $13.85 \pm 0.12aA$ $14.00 \pm 0.05bB$ 12.26 ± 0.32 bB

Ren et al., Reducing the nicotine content of tobacco by grafting with eggplant. BMC Plant Biology (2020) 20:285

TAG TF Report 2020 Congress Online – 201012


- 1. Replacing tobacco root with eggplant by grafting produced tobacco leaves with ultra-low nicotine level.
- 2. The contents of nornicotine, anabasine, NNN, NNK, NAT, total TSNAs and nicotine level of mainstream cigarette smoke decreased.
- 3. The contents of amino acids and the precursors of alkaloids increased in grafted tobacco.

Recent progress – other approaches

SA-prodicing endophytic bacteria (EB) isolated from plants were used in treating tobacco plants. EB-44 can successfully colonize Nicotiana spp., leading to increased endogenous SA production and resistance to tobacco wildfire disease, as well as increased nicotine accumulation.

Md. Nurul Islam et al., Salicylic Acid-Producing Endophytic Bacteria Increase Nicotine Accumulation and Resistance against Wildfire Disease in Tobacco Plants. Microorganisms (2020) 8(1): 31.

TAG TF Report 2020 Congress Online – 201012

Acknowledgements

- Last meeting-Zimbabwe 12 Oct, 2019
- Work Completed

Acknowledgements

We thank Paolo Donini of JTI, Toru Hiyoshi of JT-LTRC, and Peter Edde of ALCS for their help in reviewing the manuscript. We also thank Eeva Marignac, Colin Fisher, Henri Papenfus, Paul Harp, Masahiro Miyoshi, Bernhard Eitzinger, Xavier Cahours, Anne Fisher, and Mauri Winegardner of CORESTA, and the 2018-2020 Scientific Commission and Board members of CORESTA for critical reading of the manuscript.

THANK YOU