

Cigarette Variability Task Force: CVAR

Coordinator: Jason Flora

Secretary: Rana Tayyarah

CORESTA

Centre de

COopération pour les REcherches Scientifiques Relatives au TAbac

Cooperation Centre for Scientific Research Relative to Tobacco

CORESTA

Association founded in 1956

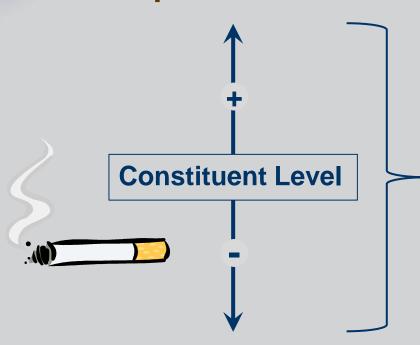
- Ruled by French law
- > The purpose being-

CORESTA's Vision:

- "To be recognized by our members and relevant external bodies as an authoritative source of publically available, credible science and best practices related to tobacco and its derived products"
- 147 member organizations (40 countries)

www.coresta.org

Background


- Scientists measure tobacco and smoke constituents for a variety of reasons
- There is variability associated with measuring these constituents*
- In order for the scientific community to make science-based decisions regarding tobacco and smoke constituents, they need to fully understand this variability

*ISO 8243

Sources of Measurement Variability

Tobacco and smoke analyte variability results from multiple sources:

Analytical Testing Variability

- Different operators and laboratories
- Methodologies
- Temporal changes

Commercial Cigarette Variability

- Raw materials (e.g., tobacco)
- Equipment
- Temporal Change

Analytical Testing

- Generally, analytes present in a higher concentration have lower variability than lower concentration analytes
- Generally, standardized methods show lower variability (e.g., tar, nicotine, CO, and TSNAs)

Analytical Testing

- CORESTA has focused on developing consensus standardized methods
 - Proficiency studies have elucidated repeatability and reproducibility of CORESTA Recommended Methods (CRMs)
 - More than 80 CRMs have been created for which ~40 ISO standards have been based
 - Analytical testing has used single batch commercial and/or reference products
- Prior to CVAR TF, CORESTA had not systematically addressed commercial cigarette variability

Cigarette Variability (CVAR) Task Force

- The CORESTA Scientific Commission approved the creation of the CVAR Task Force in June 2014
 - > Task Force Coordinator: Jason Flora
 - Altria Client Services, Richmond VA
 - Secretary and Study Coordinator: Rana Tayyarah
 - ITG Brands, LLC, Greensboro NC

CVAR Objectives

- 1. To develop an appropriate experimental plan to explore commercial cigarette variability
- 2. To conduct a collaborative study to enhance the understanding of overall tobacco and smoke analyte variability relevant to commercial cigarette design features
- 3. To create a CORESTA technical report

CVAR Study Plan Summary

- The objective is to conduct a study to understand commercial cigarette variability as determined by the measurement of select tobacco and mainstream smoke analytes
 - Physicals and TNCO
 - > WHO priority list
 - Abbreviated USFDA harmful and potentially harmful constituents (HPHC) list
 - Hydrogen cyanide (HCN)

Measurement Type	Analyte Class	Measure/Analyte
Physicals		Pack moisture (as packed)
		Cigarette weight (as packed)
		Cigarette weight (post conditioning)
		Filler/tobacco Weight (post conditioning)
		Filter Tip Ventilation
		Circumference
		Length
		Resistance to Draw (Open/Closed)
		Paper porosity
Filler ¹⁰	Alkaloids	Nicotine
	TSNAs	NNN
		NNK
	Ammonia	Ammonia (Reported as NH ₃)
	Metals	Arsenic
		Cadmium
Smoke	TNCO	TPM
		Nicotine
		Water
		Carbon Monoxide
		NFDPM ("tar")
	Carbonyls	Acetaldehyde
		Acrolein
		Crotonaldehyde
		Formaldehyde
	Volatiles	Acrylonitrile
		Benzene
		1,3-Butadiene
		Isoprene
		Toluene
	Ammonia	Ammonia
	PAA	4-Aminobiphenyl
		1-Aminonaphthalene
		2-Aminonaphthalene
	PAH	Benzo[a]pyrene
	TSNA	NNN
		NNK
	HCN	HCN

CVAR Study Plan Summary

- Analytical testing variability will be minimized by:
 - Tested at one time (ISO and HC)
 - > Single laboratory per constituent
 - > Randomized run order
 - Reference products (3R4F or 1R6F)
- Samples will be stored at -20°C to -24°C until time of testing to minimize product changes over time
- The study is designed to allow the estimation of short-term, medium-term, and long-term variability for a range of cigarette types available across the world-wide market

CVAR Study Plan Summary

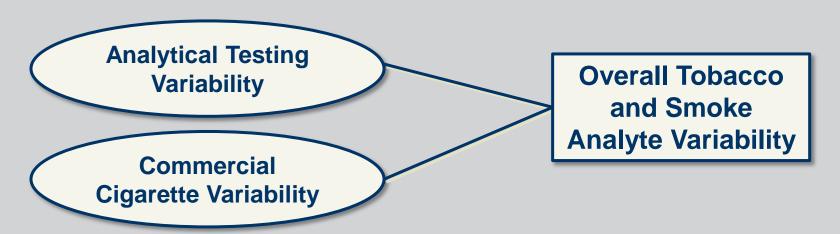
CVAR TF has designed and initiated 3 study phases

- 1) Phase 1 (short-term variability):
- 3 collections within 1 week

3) Phase 3 (long-term variability) – product collected beginning of each year for 3 years

Volunteers Commercial Cigarettes

- Altria Client Services
- Beijing Cigarette Factory, CNTC
- British American Tobacco (Germany) GmbH
- China Tobacco Hunan Industrial Co., Ltd., CNTC
- Imperial Tobacco Group
- Japan Tobacco Inc.
- JT International
- Philip Morris Int.
- RAI Services Company


CVAR Accomplishments

- Phase 1 Short-term variability:
 - > Sample collection and analysis is complete
- Phase 2 Mid-term variability
 - > Sample collection is complete
 - Sample analysis is in progress
- Phase 3 Long-term variability
 - > Sample collection will be complete in June 2017
- Technical reports
 - Will be published on the CORESTA Web Site

Part 1 Summary

- A range of cigarettes in the worldwide marketplace are being collected at different points in time.
- ❖ Testing of these samples will provide a better understanding of the impact of product variability to overall tobacco and smoke analyte variability

