
Proficiency Testing for Pesticide fa **Residues Analysis in Tobacco** Proficiency Testing from

Masahiro MIYOSHI¹, Marco PRAT², Dominic ANDERSON³ and Mark SYKES³

1 Japan Tobacco Inc., Leaf Tobacco Research Center, 1900, Idei, Oyama, Tochigi 323-0808, Japan; E-mail: masahiro.miyoshi@jt.com 2 Japan Tobacco International, Germany GmbH, Diedenhofener Str 20, 54294, Trier, Germany 3 Fapas, Fera Science Ltd, Sand Hutton, York, YO41 1LZ, United Kingdom

INTRODUCTION

There is an increasing demand for laboratories to demonstrate their performance and reliability in pesticide residue analysis. Proficiency Testing (PT) schemes provide an independent and unbiased assessment of performance. The Cooperation Centre for Scientific Research Relative to Tobacco (CORESTA) Agrochemical Analysis Sub-Group (AA-SG) has been implementing a PT on pesticide residues analysis in tobacco test materials every year since 2005 in collaboration with Fapas from Fera Science Ltd, UK (Fera), in order to evaluate the quality of an analytical laboratory's results.

Fapas PT since 2015. Around 25 laboratories have been taking part in every round.

TEST MATERIALS

- Artificially spiked and/or agronomically incurred test materials were provided for participants to determine the identity of and the levels of pesticide residues present in each test material.
- A total 80 pesticides which were chosen from those listed in CORESTA Guide No.1 and its candidates have been tested in 13 rounds of this PT since 2005 (Table 1).

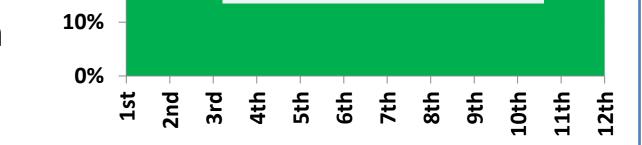
EVALUATION

- *z*-scores are calculated as:

Table 1. Tested analytes with rate of satisfactory z -scores in CORESTA-Fapas PTs since 2005 FT0112 FT0103 FT0104 PT No. FT0101 FT0102 FT0105 FT0106 FT0107 FT0108 FT0109 FT0110 FT0111 2016 2007 2008 2015 **Tested analytes** 2006 2014 2009 2010 2011 2012 2013 Year 2005 Sample type spiked spiked incurred spiked incurred spiked spiked spiked spiked spiked spiked spiked spiked incurred spiked incurred 2,4-D 80% 65% N/A 65% acetamiprid 80% 88% 67% acibenzolar-S-methyl 78% aldicarb (Σ) 60% 90% 91% azoxystrobin 100% 91% 64% 89% benalaxyl bifenthrin 77% 80% 89% bitertanol 89% butralin 76% 74% 76% 83% 79% 82% carbaryl 68% 63% 55% 62% carbendazim (Σ) 81% 67% 94% 73% carbofuran (Σ) 76% 85% 93% 82% chlorantraliniprole 70% 74% chlorothaloni 45% 45% N/A N/A chlorpyrifos 88% 75% 82% 89% chlorpyrifos-methyl 50% 65%

N. of tested analytes															13
trifluralin			86%				89%								
triazophos triflumuron								94% 87%			94%				
riadimefon								0404	94%			91%	83%	91%	
hiophanate-methyl									72%						/ v
hiamethoxam						79%			80%			/ 2 /0		TOO \0	60%
eflubenzuron hiacloprid												81% 72%		79% 100%	68%
ebuconazole												010/		89%	89%
pirotetramat (Σ)														50%	
juinalphos						0270								88%	
bymetrozine						62%			7 5 /0	7070	0070		01/0	10/0	0/ د د
profenofos propamocarb		76%					72%		68% 79%	76%	74% 68%		81%	70%	55%
pirimiphos-methyl		700/					770/				740/			95%	
piperonyl butoxide						65%						80%		0 = 0 (
permethrin (Σ)			79%				70%								
penconazole						77%						/ 0			
parathion	0770											95%			
oxamyl	67%	7070					0.070	01/0	0070		02/0	90%	0070	,0/0	,070
pendimethalin	88%	76%				0070	65%	81%	80%	70%	82%	05%	80%	78%	78%
methamidophos methomyl (Σ)	N/A	44%	48%			53% 88%	N/A	67%		70%		62% 83%		78%	
metalaxyl (Σ) methamidonhos		63% 11%	100/			E 20/	NI / A	89%		90%		620/	92%	700/	
maleic hydrazide		C20/	50%	%				000/		0.007			0.207		
prodione (Σ)				55%		83%			78%	78%	84%	77%	78%	40%	
probenfos	/0							92%			/ V				
heptachlor (Σ)	82%						02/0	, 570			52%	86%			
indoxacarb (Σ)	5070	04/0					82%	75%							/ U /0
folpet imidacloprid	58%	64%									N/A				76%
flumetralin Folget		61%					70%	81%		86%	NI / A		79%	79%	67%
flubendiamide		C 4 0 (700/	040/		82%	87%		700/	89%	78%
luazifop-butyl (Σ)						100%									
fenvalerate (Σ)	69%									64%		68%		77%	
fenamiphos sulfoxide				88%					70%						
fenamiphos sulfone				78%											
fenamiphos (2)				82%			0/ ف ف			01/0					
fenamiphos (Σ)							95%	100%		81%	0770			0370	0470
famoxadone fenamidone						N/A		56% 100%			89%			89%	84%
ethion famovadone								F <i>C</i> 0/						95%	
endosulfan sulfate		60%									67%				
beta-endosulfan		75%									63 0/				
alpha-endosulfan		68%										78%			
endosulfan (Σ)	59%	58%				71%									
dithiocarbamates (as CS ₂)					65%								54%		
dimethomorph (Σ)				58%				89%			91%				
dimethoate (Σ)									61%	N/A		57%		71%	
diflubenzuron							$\mathbf{J}\mathbf{L}$ /U	78%	//				, 070	5570	
difenoconazole							82%	0470	100%				73%	90%	81%
dicloran								84%	67%					79%	
deltamethrin (Σ) dicamba	47%	59%					58%	67%	670/			76%			
pp'-DDT doltomothrin (S)	470/			70%				C7 0/			71%	700/			
op'-DDT				68%							77%				
DDT (Σ)		, •					, •			52%					
cypermethrin (Σ)		71%				67%	71%						77%		
cymoxanil						75% 75%			0170				01%		
cyfluthrin (Σ) cyhalothrin (Σ)						75%	80%		81%	86%	88%		81%		
clomazone						94%	000/		95%	0.004	000/				
clothianidin									81%						61%
chlorthal-dimethyl				00/0		73%			89%		0070			89%	
chiorpyritos-methyl				50%							65%				

$z=\frac{(x-x_a)}{x-x_a}$							
σ_p where x: the participant's rep	orted result						
X_a : the assigned value and σ_p : the standard devia	tion for PT.						
 Obtained z-scores can be inte z ≤2 : satisface 	•						
2< <i>z</i> ≤3 : questio	onable						
z >3 : unsatis	sfactory						
RESULTS	analysis in tobacco so that						
 The rate of satisfactory z- scores for all participants has been increasing from a minimum of 63% to a maximum of 83% and is stable at around 80% in the last 5 	70% -						
 rounds. To resolve questions arising from each round of PT, 	60% - 50% - 40% -						


Unsatisfactory z-scores Questionable z-scores Satisfactory z-scores

Italics indicate for information only.

expands knowledge based on these pesticide residues

CORESTA AA-SG hold an

annual discussion which

CONCLUSIONS

• PT for pesticide residues analysis in tobacco has contributed to improve overall laboratory performance over 12 years.

30%

20%

• Future PT could be more effective with an increase in the number of participating laboratories (e.g. from African or Latin American regions).

ACKNOWLEDGMENT

CORESTA Agrochemical AA-SG and all laboratories participating in the CORESTA-Fapas PTs.

Reference: Cooperation Centre for Scientific Research Relative to Tobacco (CORESTA), Guide No. 1: The Concept and Implementation of Agrochemical Guidance Residue Levels, July 2016, https://www.coresta.org/sites/default/files/technical_documents/main/Guide-No01-GRLs4th-Issue-July16.pdf AA-138-CXP_LAPRW2017-Poster_170514