

In Vitro Toxicity Testing Sub-Group (IVT SG) Annual Report

Kunming, China

October 23, 2018

IVT SG Membership

- **SG** Coordinator: Kei Yoshino (JT)
- **SG Secretary**: David Thorne (BAT)
- **SC Liaison**: Kei Yoshino (JT)
- SG Membership
 - > BAT, Battelle, CNTC, Covance, Enthalpy, Imperial Brands, JTI, JTI/Oekolab, KT&G, Labstat, PMI, RAI, Vitrocell, JT, Charles River Laboratories, ITC

- Objective 1: To compile and review information on in vitro toxicity testing and apply learnings to further biological research.
- Objective 2: To organize and conduct periodically proficiency testing of tobacco and tobacco related products.

Recent Two Meetings

- > January 22-23, 2018: Southampton, UK
 - 34 delegates attended the meeting
 - Meeting was hosted by British American Tobacco
- October 22, 2017: Kunming, China
 - 30 delegates attended the meeting

Upcoming Meetings

- March 8, 2019: Baltimore, US
 - Meeting will be hosted by JT (TBC)

Projects

Project	Status	Company	Responsibilities				
Whole Smoke	Draft Publication Under Revew		Authors: D. Thorne (BAT), R. Wieczorek (ITL), T. Fukushima (JT), H. Shin (KT&G), R.Leverette (RAI), Mark Ballantyne (Covance), Xiang Li (CNTC), Betsy Bombick (RAI)				
iVMN	Draft Report Under Review	ALCS, CIVIC, COVAIICE,	Coordinator : E. Weber (JTI Oekolab) Co-coordinator : T. Fukushima (JT) Statistical analysis : A.hauleithner (JTI Oekolab)				
MLA	On-going		Coordinator : D. Smart (PMI) Co-coordinator = E. Weber (JTI) Statistical Analysis = A.hauleithner (JTI Oekolab)				
NRU	ITL, PMI, KT&G, Covance, JT On-going Labstat, ZTRI, Altria, Enthalpy		Coordinator = K. Yoshino (JT) Co-coordinator = R. Wieczorek (ITG) Statistical Analysis = A.hauleithner (JTI Oekolab)				
Ames	2018 start	Charles River, CNTQS&TC, Covance, Enthalpy, IB- Reemtsma, JT, KT&G, Labstat, Ökolab, PMI	Coordinator = R. Wieczorek (ITG) Co-cordinator = E. Weber (JTI Oekolab) Statistical Analysis = A.hauleithner (JTI Oekolab)				

- ➤ Revision of the "Rationale Paper" for combustible products
- Recommendations for NGP (New Generation Products) testing

Inter-laboratory Study

- Mouse Lymphoma Assay (MLA) -

Objectives

- ➤ To conduct an inter-laboratory mouse lymphoma assay (MLA) proficiency study using two test items and the Kentucky Reference KR 3R4F in the L5178Y cell line.
- ➤ Assessment of the discriminatory power of the test towards different tobacco products.

Responsibilities

Coordinator: Daniel Smart (PMI)

Co-Coordinator: Elisabeth Weber (JTI Ökolab)

Statistical analysis: Alexander Hauleithner (JTI Ökolab)

Test Design

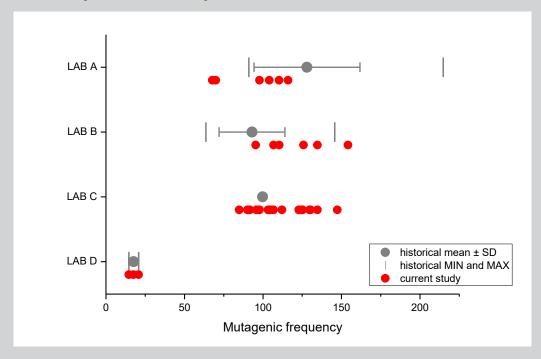
- Labs use their own protocols
- Basic requirements were defined in the study plan (based on OECD TG 490)
 - Conditioning and smoking of test items according to ISO International Standards
 - Cytotoxicity (as relative total growth; RTG) must be measured concomitantly with mutation frequency (MF).
 - Short +S9 treatment mandatory
 - At least 3 replicates per test item, concentrations as per lab protocol
 - Negative and positive controls (+S9: pro-mutagen: CP, B[a]P; -S9: direct mutagen: e.g. MMS, MMC)
- Test Pieces: 100 % FC, 100 % Bly, and 3R4F

Participants' protocol

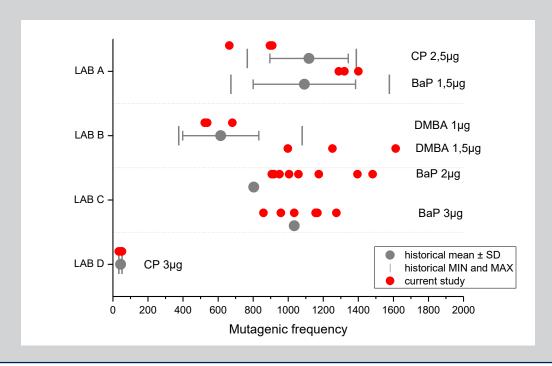
> Cell information

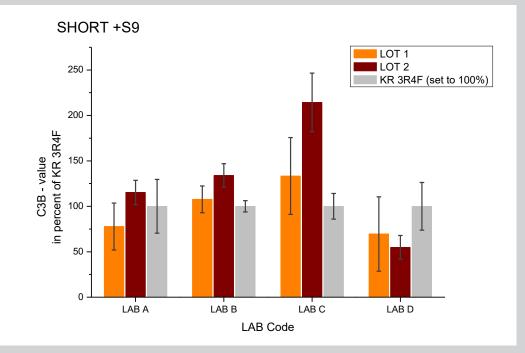
	LAB A	LAB B	LAB C	LAB D	
cell line	L5178Y TK+/- 3.7.2C	L5178Y TK+/- 3.7.2C (IVGT)	L5178Y TK+/- 3.7.2C	L5178Y TK+/- 3.7.2C	
cells free from contamination / mycoplasma	YES	YES	YES	NO	

Participants' protocol

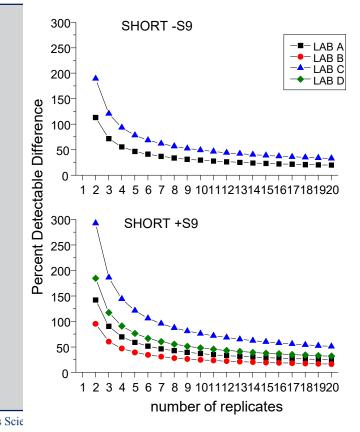

> Treatments

Treatment	LAB A	LAB B	LAB C	LAB D	
SHORT +S9	Х	Х	X	Х	
SHORT -S9	Χ		X		
SHORT +S9	LAB A	LAB B	LAB C	LAB D	OECD
Treatment time (h)	3	4	3	3	3-4
Expression time (h)	48	48	48	48	48
Selection time (d)	14	14	12-14	12	10-12
SHORT -S9	LAB A	LAB B	LAB C	LAB D	OECD
Treatment time (h)	3		3		3-4
Expression time (h)	48		48		48
Selection time (d)	14		12-14		10-12


❖ Negative Controls (SHORT +S9)


Positive Controls (SHORT +S9)

Mutagenicity Ranking: SHORT +S9, C3B-values in percent of 3R4F


Mutagenicity Ranking: Summary

		↑ high		m utagenicity		low ↓	
		Rank 1	Rank 2			Rank 3	
	SHORT +S9	LOT 1	II	KR 3R4F	II	LOT 2	
LAB A	SHORT-S9	LOT 1	II	KR 3R4F	II	LOT 2	
LAB B	SHORT +S9	KR 3R4F	=	LOT 1	=	LOT 2	
	SHORT-S9						
LAB C	SHORT +S9	KR 3R4F	=	LOT 1	=	LOT 2	
	SHORT-S9	KR 3R4F	II	LOT 1	II	LOT 2	
LAB D	SHORT +S9	LOT 2	-	LOT 1	II	KR 3R4F	
	SHORT-S9						

Percent Detectable Difference between 2 Samples (t-Test with n Replicates)

_										
		LAB A		LAE	3 B	LAB	C	LAE	3 D	
	n	SHORT +S9	SHORT -S9							
	2	142,2	113,2	95,3		292,8	189,6	184,7		
	3	90,4	72,0	60,6	186,2	120,6	117,5			
	4	70,0	55,7	46,9		144,2	93,4	91,0		
	5	58,8	46,8	39,4		121,1	78,4	76,4		
	6	51,6	41,1	34,5		106,2	68,8	67,0		
	7	46,4	37,0	31,1		95,6	61,9	60,3		
	8	42,5	33,9	28,5		87,6	56,7	55,3		
	9	39,5	31,4	26,5		81,3	52,7	51,3		
	10	37,0	29,5	24,8	_	76,2	49,3	48,1	_	
	11	34,9	27,8	23,4	ted	71,9	46,6	45,4	ted	
	12	33,2	26,4	22,2	not tes	68,3	44,2	43,1	not tested	
	13	31,6	25,2	21,2		65,2	42,2	41,1	not	
	14	30,3	24,1	20,3		62,4	40,4	39,4		
	15	29,1	23,2	19,5		60,0	38,9	37,8		
	16	28,1	22,4	18,8		57,8	37,5	36,5		
	17	27,1	21,6	18,2		55,9	36,2	35,2		
	18	26,3	20,9	17,6		54,1	35,1	34,1		
	19	25,5	20,3	17,1		52,5	34,0	33,1		
	20	24,8	19,7	16,6		51,0	33,1	32,2		ies Res

Summary

- > 3 Samples (100 FC, 100 BLY and KR 3R4F) were tested in MLA assay.
- ▶ 4 Laboratories participated in the study. Results for SHORT +S9 (4) and SHORT -S9
 (2) were reported.
- A nonlinear regression model was used to model the dose response relationship.
- ➤ In SHORT +S9 and SHORT -S9 the test piece with the lowest mutagenicity was mainly 100 BLY.
- The test pieces could not be discriminated in neither SHORT +S9 nor SHORT -S9.
- ➤ The median of the Minimal Detectable Difference between the slopes of two samples tested in 3 replicates is ~ 90-100%.

Revision of the Rationale Paper

Revision of the Rationale Paper

Background

- ➤ The Rationale and Strategy for Conducting In Vitro Toxicity Testing of Tobacco Smoke: Published in May 2004, and need to be revised
- Draft Title: "The Rationale and Strategy for in vitro toxicity testing of combustible products"

Status

- Table of Contents have been agreed
- Major Contributors: Betsy Bombick (RAI), Jacqueline Miller (JTI), Oliver Moennikes (PMI), Tsuneo Hashizume (JT), Doshi Utkarsh (ALCS)
- > Timeline: under discussion

Guidance Document for NGP testing

Guidance Documents for NGP testing

Background

- Need some recommendation to outside of CORESTA for NGP testing conditions
- "Outline" for each chapter : under discussion

Working Group

- ➤ Redefining CORESTA test Battery recommendation (<u>RAI/Bombick</u>, BAT, ALCS, Covance, ITL, JT/JTI, Enthalpy, Charles River)
- ➤ Aerosol generation & Dosimetry: cig/NGPs, Definitions (ALCS, BAT, Vitrocell, RAI, Enthalpy, Covance, ITL, Labstat, JT/JTI, Battelle)
- Cell culture/assays (BAT, JT/JTI, ITL, CRL, Covance, RAI)
- E-liquid (ALCS/Lee, PMI, Covance, ITL, Labstat, CRL, JTgroup, BAT, RAI)

Genetox Workshop in US

Recommendations for the Generation & Use of In Vitro Assay Data for Tobacco Product Regulations

Background

- > Proposed by Dr. Martha Moore (Ramboll Environ)
- Proposal to undertake a series of discussion workshop (similar to the IWGT approach). Representatives for all the relevant "stakeholders"
- ➤ Identify key issues, discuss and reach consensus on key issues and publish a series of papers presenting the consensus
- ➤ Focus on regulatory issues including those specific to US FDA (and therefore could complement the CORESTA IVTSG efforts)

Host organization

IIVS (Institute for In Vitro Sciences): Non-profit organization in US

Recommendations for the Generation & Use of In Vitro Assay Data for Tobacco Product Regulations

- Potential Participants: (Have an "official" workgroup and then open to observers)
 - Tobacco Companies (2-3 key individuals from each organization)
 - > CROs
 - > FDA: CTP & NCTR
- Goals for the first meeting (November 27-28)
 - Outline "all" the key issues & Prioritize into three priority buckets
- Relationship of this workshop to CORESTA
 - > To be an independent exercise. K. Yoshino will serve as a pipeline to CORESTA.
 - Draft discussion topics reviewed/discussed by the IVT members.

Background

- Collaboration between BMK SG and IVT SG suggested by the SC and the Board.
- Representative delegates attend each other's meetings to foster collaboration.
 - BMK to IVT: Mike McEvan (BAT), G.L.Prasad (RAI), Graham Wood (ACR)
 - IVT to BMK: Kei Yoshino (JT)
- Find key areas of science in between Clinical (BMK) & in vitro (IVT)
 - FDA's Predictive Toxicology Roadmap
 - EU-ToxRisk
 - Toxicology Testing in the 21st Century (Tox21)

Key concept

- > IVIVE (in vitro to in vivo extrapolation)
- Predictive Toxicology

Areas in Focus in general : to be selected by experts

- Exposure scenarios / target tissue conc.
- ADME/PBPK
- Quantitative AOP
- Computational toxicology
- Population / human variability
- Organ on a chip
- > QSAR
- Read Across

- « Organizing Team » for « Ad-hoc Group »
 - Members
 - G.L.Prasad (RAI), K. Yoshino (JT), Damian McHugh (PMI), April Brys (Battelle), additional delegates (TBD)
 - Propose areas of common interests
 - Examples
 - Omics : Proteomics / Metabolomics
 - Human Relevant Dose : Computer simulation / organ-on-a-chip
 - AOP (Adverse Outcome Pathways)
 - Find & communicate with experts
 - Plan workshops (TBD)

