

Special Analytes Sub-Group Report Berlin 2016

Co-ordinator: Michael Intorp

Secretary: Jana Ticha

- **Terms of Reference**
- Sub-Group Meetings
- **Achievements and Status of Projects**
- **❖** Joint Experiments on Aromatic Amines
- **New Collaborative Study on Aromatic Amines**
- Outlook on future NWIP

Terms of Reference

- To propose practical and robust recommended methods for smoke analytes
- To organise and conduct periodically collaborative/proficiency testing of smoke analytes other than TNCO

Special Analytes Sub-Group Meetings

- Lausanne on 28th April 2015 was hosted by PMI; 31 Participants
- **❖** Berlin on 8th October hosted by CORESTA; 34 Participants
- **❖** Next Meeting will take place in Sept/Oct 2017

SPA SG Achievements and Activities

Achievements

Project No.	Activity	Leader	Time
46	CRM83 Ammonia in mainstream smoke recently published	M. Intorp / J.Ticha	August 2016

On-Going

Pr	roject No.	Activity	Leader	Time
	48	Prestudies on Aromatic Amines 4 methods being evaluated (GC-MS and LC-MS/MS)	M. Intorp / J.Ticha	Oct 2016

Status of ISO Projects

Reviewed standards

- **❖ WG14** BaP in cigarette smoke
 - ✓ Established to undertake collaborative study with alternative extraction solvent (cyclohexane)
 - ✓ CD 22634-2 approved with minor comments, amended, and to be published as DIS.

New Standards

- ISO/DIS 19290 TSNAs in mainstream cigarette smoke by LC-MS/MS; Based on CRM75 DIS approved Nov 2015, IS prepared, close to publication
- **❖** ISO/NP 21160 Carbonyls in mainstream cigarette smoke; Based on CRM74 − Approved as WD
- ISO/NP 21330 VOCs in mainstream cigarette smoke; Based on CRM70 Approved as WD

Joint Experiments Comparison of various Aromatic Amines Methods

- ❖ Performance check of GC-MS method provided by JTI/Ökolab
- Comparison of two GC/MS(NCI) methods Altria and BAT
- **❖** Performance of LC-MS/MS method provided by CNTC
 - Analytes: o-toluidine, 2,6-dimethylanilin, o-anisidine, 1-aminonaphthalene, 2-aminonaphthalene, 3-aminobiphenyl and 4-aminobiphenyl
 - Sample: 3R4F
 - Smoking regimes: ISO and Health Canada Intense T-115 (HCI)
 - Five replicates per method and per smoking regime.

Aromatic amines Summary of activities

JE	Method	From	Activity	Observations
1	GC/MS	JTI/Ökolab	Familiarisation study	Challenging to adopt widely – issues with sample throughput
2	2 GC/MS methods	Altria BAT	Familiarisation study Comparison of EI and NCI Selection of the method	NCI better than EI BAT method
3	GC/MS	BAT	Derivatisation experiments Solvent comparison Increase of no. of IS (from 4 to 6)	DCM and DCE seem comparable Derivatisation conditions seem comparable
3	LC-MS/MS	CNTC	Familiarisation study Off-line SPE clean up evaluation	Not enough results available for any reliable evaluation

Aromatic Amines – Data Comparison

ANIALYTE	REGIME	CIG	Mean	r	R	Remarks	
ANALYTE			[ng/cig]	[ng/cig]	[ng/cig]		
	ISO	KR 3R4F	12.19	4.34*	6.44*	JE 2016 GC/MS	
			10.88	2.57*	9.18*	JE 2016 LC-MS/MS	
			11.79	3.72	15.93	JE 2015 all methods	
			9.26	12.46	12.54	Altria Method (NCI)	
1 - AN			13.1	10.55	10.7	BAT Brazil Method (NCI)	
I - AIN	HCI		25.08	9.44	10.64	JE 2016 GC/MS	
			26.59	4.33	9.23	JE 2016 LC-MS/MS	
			22.94	4.42	11.76	JE 2015 all methods	
			17.89	39.5	39,83	Altria Method (NCI)	
			24.52	21.61	22.13	BAT Brazil Method (NCI)	

^{*}Limited data set - indicative value only

Aromatic Amines – Data Comparison

ANALYTE	REGIME	CIG	Mean	r	R	Remarks	
ANALTIE	REGINE		[ng/cig]	[ng/cig]	[ng/cig]		
	ISO	· KR 3R4F	1.41	1.09*	1.32*	JE 2016 GC/MS	
			0.72	0.22*	0.27*	JE 2016 LC-MS/MS	
			1.33	0.48	2.45	JE 2015 all methods	
			1.14	1.04	1.11	Altria Method (NCI)	
4 - ABP			1.44	1.92	1.96	BAT Brazil Method (NCI)	
4 - ADP	HCI		3.01	1.65	2.18	JE 2016 GC/MS	
			1.71	0.32	0.41	JE 2016 LC-MS/MS	
			2.85	1.22	2.91	JE 2015 all methods	
			2.54	5,23	5,27	Altria Method (NCI)	
			3.17	2.87	2.92	BAT Brazil Method (NCI)	

^{*}Limited data set - indicative value only

Aromatic amines Next steps

- GC/MS method
 - Preparation of Collaborative Study (Oct/Nov16)
 - Familiarisation with method by all participants (Nov16/Feb17)
 - Shipment of samples (Dec16/Feb17)
 - Laboratories to generate data and report results (Mar/July17)
 - Statistical evaluation (Aug17)
- LC-MS/MS method
 - Smaller group to work on weaknesses/improvements of circulated method and report progress to SG

New project proposals

- Proficiency testing (PT) on existing in-house methods, ISO, CRMs, SOPs should include B[a]P (1), Carbonyls (8), Selected Volatiles (5), TSNA (4), Phenols (7), Ammonia (1)
 - Majority of labs participate in PT offered by University of Kentucky
 - > SG member from University of Kentucky agreed to clarify by end 2016 with PT team to possibly extend scope of current/future studies on:
 - > All compounds included in CRMs
 - More condensate levels (1R6F)
- For further discussion on NWIP information presented on combined methods (VOC/Carbonyls/SV) and TobLabNet SOP VOC/Carbonyls will be provided

Acknowledgements

➤ We usually have at least 20 laboratories participating in current collaborative studies

➤ Thanks to all the current and previous participants for their lively discussion and openness - without whom CORESTA would not be able to deliver such robust and reliable data

Thank you for your attention!