

CORESTA

In Vitro Toxicity Testing Sub-Group (IVT SG)

2016 Annual Report

Berlin, Germany

October 13, 2016

IVT SG Membership

- SG Coordinator
 - Kei Yoshino (JT)
- SG Secretary
 - David Thorne (BAT)
- SC Liaison
 - Paul Harp (RAI)
- SG Membership
 - BAT, Battelle, CNTC, Covance, Enthalpy, ITL, JTI, JTI/Oekolab, KT&G, Labstat, PMI, RAI, Vitrocell

- Objective 1: To compile and review information on *in vitro* toxicity testing and apply learnings to further biological research.
- Objective 2: To organize and conduct periodically proficiency testing of tobacco and tobacco related products.

CORESTA

Accomplishments

Technical Reports

Neutral Red Uptake Assay Proficiency Study

- Author & Trial Coordinator: Betsy Bombick, Co-author: Alexander Hauleithner
- Published on CORESTA Website in November 2015

> Ames Assay Proficiency Study

- Author: Wendy Wagstaff, Trial Coordinator: Betsy Bombick, T.S. Kumaravel
- Published on CORESTA Website in March 2016

In Vitro Micronucleus Proficiency Study

- Author: Kei Yoshino, , Trial Coordinator: Betsy Bombick, Study Statistician: Wendy Wagstaff
- Published on CORESTA Website in March 2016

Recent Two Meetings

March 12, 2016: New Orleans, US

- 22 delegates (+1 guest) attended the meeting
- Meeting was hosted by Battelle Institute, and supported by RAI & JT
- October 9, 2016: Berlin, Germany
 - 26 delegates (+3 guests) attended the meeting

Upcoming Meetings

- March 2017: Baltimore, US
 - Meeting will be hosted by ALCS
- September/October 2017
 - CORESTA Joint Meeting

Proficiency Studies

IVT SG Report CORESTA Congress, Berlin - 161013

in vitro MNT

Objectives

- Evaluation of the proficiency of the participating laboratories
- Assessment of the discriminatory power of the test towards different tobacco products

Responsibilities

- Coordinator: Elisabeth Weber (JTI/Oekolab)
- Co-Coordinator: Toshiro Fukushima (JT)
- Statistical analysis: Alexander Hauleithner (JTI/Oekolab)

Basic agreement

- Test cigarettes: 3R4F, 100% FCV and BLY
- Study procedure: Follow lab's own protocol
- Lab Performance: Coefficient of Variance (Standard Deviation in percent of Mean)

Assay Conditions

	LAB 1	LAB 2	LAB 3	LAB 4	LAB 5	LAB 6	LAB 7	LAB 8	LAB 9
Cell Line	V79	CHO WBL	CHO WBL (IVGT)	V79	CHL/IU	СНО-К1	TK6	V79	СНО-К1
CytB	YES	NO	NO	YES	NO	YES	NO	NO	NO
Scoring	Automated Microscope	Flow Cytometry	Manual	Manual	Automated Microscope	Manual	Manual	Automated Microscope	Manual
Staining	DAPI		Acridine Orange	Acridine Orange	DAPI - Cell Mask Orange	DAPI	Acridine Orange	DAPI	Acridine Orange

***** Treatments

	LAB 1	LAB 2	LAB 3	LAB 4	LAB 5	LAB 6	LAB 7	LAB 8	LAB 9
SHORT -S9	х	х	х	х	х	Х	х		Х
SHORT +S9	х	х	х		х	х	х	х	х
LONG		х	х			Х	х		

IVT SG Report CORESTA Congress, Berlin - 161013

Results (Draft)

- Almost no difference in "Nicotine/TPM" in TPM extracts among laboratories.
- > A Generalized Linear Model (Logistic Regression) was applied to the data.
- Goodness of Fit statistics show that the model is suitable for the reported data.
- In SHORT –S9, SHORT +S9 and LONG the mutagenicity ranking of test items was mainly <u>100 FC > KR 3R4F > 100 BLY</u>.
- The Coefficient of Variation (CoV) of the mutagenic rates is used to assess Lab performance. It is mainly below/around 30% for all test items and schedules.
- The median of the Minimal Detectable Difference between the slopes of two test items tested in three replicates is 60-70%.

Upcoming Proficiency Studies

Assay	Schedule	Organization	Study Contributors
NRU	2016 start	ITL, PMI, JT, JTI/Oekolab, KT&G, ZTRI, Covance, Labstat , Enthalpy, ALCS, CNTQSTC [11 labs]	Coordinator: K. Yoshino Co-coordinator: R. Wieczorek Statistical analysis: A. Hauleithner Nicotine analysis: JT
MLA	2017 start	PMI, JTI/Oekolab, ZTRI, Labstat, Covance [5 labs]	Coordinator: D. Smart (<u>TBC</u>) Co-coordinator: E. Weber Statistical analysis: A. Hauleithner Nicotine analysis: JT
Ames	2018 (TBC)	ITL, PMI, KT&G, JT, JTI/Oekolab, Labstat, Covance, CNTQSTC [8 labs]	Coordinator: (TBD) Co-coordinator: (TBD) Statistical analysis: A. Hauleithner Nicotine analysis: JT

Poster: "Review of aerosol exposure systems relative to the analysis of cytotoxicity: a CORESTA in vitro Sub Group perspective": CORESTA Congress 2016

Authors: D. Thorne (BAT), R. Wieczorek (ITL), T. Fukushima (JT), H. Shin (KT&G), R.Leverette (RAI), Mark Ballantyne (Covance), Xiang Li (CNTC), Betsy Bombick (RAI)

A review of aerosol exposure systems relative to the analysis of cytotoxicity; a CORESTA in vitro SubGroup perspective David Thome', Roman Wieczorek', Toshiro Fukushima', Han-Jae Shin', Robert Leverette', Mark Ballantyne', Xiang Li ' Betsy Bombick

British American Tobacco, Group RED, Southampton, Humpshile, SD15 8TL, UK - Preparial Brands PLC Company, Reentran Oppartambahau Grabit Albert Einstein Reg 7, 22711 Hambarg, Gammany, ¹ Japan Tobacco Inc. Scientific Product Assessment Centre, 6 2 Unegasta, Adok in Vehichma, Kompana 22746 St., Appender Vehicos Description, 20 Sologo Top, Nacosson, 20 Sologo Top, Nacoss

advantation .

protoce an aeroso may note doesy minicit ter numini traving contation and associated aeroso interactions. When coupled with a biological cell system, rangi from cell manolayers to 2D differentiated structures utilizing various biological end points, these systems and techniques may easily be outprived to researchers' preferences.	In site aerood exposure systems offer researchers a varety of two exposure te-luo, mody separimetral parameters and provide a n glafform for in vitro aerood research. These exposure systems are profuse an aerood interact dealer primics the human modeling aerootated aerood interact dealer primics de human modeling aerootated aerood interact dealer primics de human modeling boro cell mendopters to 30 differendited disubtrave platens are parleneroes.	rys to outbrnize ovel and versatile designed to condition with il system, rangin a biological end- a researchers'
---	--	---

ambinations of exposure systems, modules and plate formats give ris

etc sensor research environment that is compare, and dwene, resulting orbitations of variables that few laboratories share. However, this pres in comparing data between set-ups using similar systems and an inal are data across some platforms, making tobacco aerosol research.

ith the advent of new aerosol technologies, the envi Nex. as diverse aerosol products and experimental param or in vitro assessment. Never has it been more important as and testing strategies. However, in order to do this, the

to establish a strategy to assess these systems and the response

ofertive in ubs SubGerup on the diverse exposure systems surrently i

ee. Sive, for the first time, an overview on the diverse exposure and biological. parameter is use by indicity participants. Allow the SubCook to tationalise experimental techniques and find areas of consensus within protocols, with an ultimate goal of harmonication. "Where harmonication is not possible, the rick will allow researches the understand protocols and experimental areas between laboratories. "Finally, give technicipant in the white accord centionment and allow the incorporation of sever techniques, cuth as close tools, for the interpretation, employed in an approximation of an own biological data. It a constant mannee, see a several provides the several second servicement and allow the incorporation of severation of in vino biological data. It a constant mannee, use by industry participants.

Poster No: STPOST26

IVT SG Report CORESTA Congress, Berlin - 161013

Centre de Coopération pour les Recherches Scientifiques Relatives au Tabac Cooperation Centre for Scientific Research Relative to Tobacco

Poster Nº STPOST2

Publication Plan:

- Journal: Toxicology In Vitro (or similar)
- Key Publication Messages:
 - The survey results emphasize the diversity of *in vitro* exposure parameters and methodologies employed across the *in vitro* Sub Group and tobacco industry.
 - Pockets of harmonization already exist. For example, many of the biological protocol parameters are consistent across the Sub Group.
 - However, variables such as cell type and exposure time remain largely inconsistent.
 - The key next steps for this work will be to map parameter and system data against biological findings and investigate whether the observed commonalities and inconsistencies translate into biological variability.
 - Analysing data will give a better understanding of how data is presented and interpreted and how data may be more accurately aligned between laboratories irrespective of the lack of harmonized protocols.
 - Finally, this survey was conducted across one biological end-point, cytotoxicity. In order to understand the environment in its completeness, other biological end-points and parameters should also be assessed

Item	Status	Action	Date
Survey	Complete		2015
Poster	Complete		Oct 2016
Publication Plan	Ongoing	Agree	Oct 2016
Compile data	Ongoing	Collect remaining data	Nov 2016
Analyse/Review data	Ongoing	Compare data against parameters	Dec 2016
Present data	Ongoing	Circulate data amongst group	Dec 2016
Draft publication	Ongoing	Drafting	Jan 2017
Review publication	Ongoing	SG	Feb 2017

Review information on *in vitro* **toxicity testing**

Information on in vitro toxicity testing

Two external presentations shared

- IIVS Respiratory Toxicology Program Update: Dr. Holger P. Behrsing (Institute of in vitro Sciences)
- Monitoring Mammalian Cells in Real-Time: Dr. Yama Abassi (ACEA)

Three internal presentation shared

- > US FDA deeming regulation update : Dr. Monica Lee (Altria Client Services)
- EU TPD-II testing: Dr. Jacqueline Miller Holt (JT International)
- Literature Survey: Dr. Kazuo Erami (JT)

CORESPA

Institute of In Vitro Sciences (IIVS)

Workshop Series

- Technical Workshop for Goblet Cell Hyperplasia, Mucus Production, and Ciliary Beating Assays
 - Laboratory Exercises for pilot exercise complete
 - Summary of results to be reviewed and after selection of best methods.
 - Proof of principle phase following confirmation of methods, testing of tobacco products will commence
 - Participating/Contributing Labs: IIVS, BAT, ALCS, RAI, NCTR, JT, ITL, PMI
 - Tissue Vendors: MatTek and Epithelix

- Preliminary Survey : "Methods of in vitro toxicity testing with Emerging Products" : Kazuo Erami, Yoko Sawamoto, Toshiro Fukushima (JT)
 - Duration : 2008 2016 (August)
 - Survey targets
 - Aerosol generation method (e.g., machine vaping condition, puff count)
 - Sample preparation method (e.g., aerosol bubbling in medium)
 - Exposure method (e.g., submerged)
 - Dose level/Dose unit for data analysis
 - Endpoint targeted
 - Positive response

> <u>584</u> papers for e-cigarettes & <u>201</u> papers for heated cigarettes were found

• 50 papers were found to be relevant to our interests

Number of Literatures

- > Academia : 32
- Tobacco (e-cigarette) company: 17

Number of Literatures

IVT SG Report CORESTA Congress, Berlin - 161013

- Organization: 17 papers from Tobacco (E-cig) company, 32 papers from academia
- Aerosol Generation Method: No publication was found using CRM81

Vaping condition	E-cigarette	Tobacco Vapor
Health Canada Intense	4	11
ISO	0	1
Original Regimen	15	1

Sample Preparation Method

Aerosol collection	E-cigarette	Tobacco Vapor
According to CS collection	3	5
Bubbling aerosol into medium/PBS	14	7
Cold trap	1	0
Direct exposure	8	2

IVT SG Report CORESTA Congress, Berlin - 161013

Exposure Method

Exposure method	E-cigarette	Tobacco Vapor	
Submerge	20	11	
Air liquid interface	12	2	

Dose levels / Dose Unit

Dose unit	E-cigarette	Tobacco Vapor
Aerosol (TPM) weight	3	3
Puff	2	5
% of mother solution	8	2
Nicotine equivalent	4	1
Stick	0	1
OD	1	0
Dilution rate (for direct exposure)	4	2

IVT SG Report CORESTA Congress, Berlin - 161013

CORESTA

Literature Survey

Endpoints

- IVT recommended battery
 - Ames, MN, MLA, NRU
- Genotoxicity
 - Gamma H2AX, SCG
- Carcinogenesis
 - Cell Transformation Assay, Anchorage-independent growth assay
- Cytotoxicity
 - MTT, LDH, Trypan Blue exclusion, Apoptosis (e.g., Cytochrome C release, Mitochondrial mass, Mitochondrial perturbation), Cell membrane permeability, Cell cycle, Cell proliferation (e.g., CCK-8), Cell morphology, Ceramide determination, Transcellular electrical resistance

- Oxidative Stress / Antioxidant response
 - Anchorage-independent growth assay
- Inflammatory response / Cell migration (associated with Inflammation)
 - Cytokine release (e.g., IL-8, TNF-α), Metalloproteinase release (e.g., MMP-9), Expression of inflammatory markers (e.g., CD11b, CD66b), TEM assay, Chemotaxis assay, Wound healing, Cell invasion assay
- Adhesion
- Developmental Toxicity
 - Cardiac development (e.g., Zebrafish, Human embryonic stem cells)
- Comprehensive
 - Gene expression, Protein expression, Transcriptome analysis, Signaling pathway activation

"Direct bubbling into culture medium" or "Direct aerosol exposure"

IVT SG Report CORESTA Congress, Berlin - 161013

Summary

- It is found that a variety of methods for aerosol generation, sample preparation, exposure to biological tissues and data analysis.
- The aerosol derived from "E-cigarettes" mostly do not show positive response on CORESTA IVTSG recommended battery (i.e., Ames, MN, MLA, NRU), however, positive response of oxidative stress and inflammation are observed in many researches with samples prepared by bubbling into culture medium, however, most literature do not mention and/or do not take care about potential technical artefacts (e.g. osmolality).

Next step

The group may propose to have a workshop (at the next IVTSG meeting; TBD) to discuss an additional "CORESTA recommended battery" (endpoints, assays, technical guidance).

Acknowledgement

- Holger Behrsing (IIVS), Yama Abassi (ACEA)
- April Brys & Battelle : Hosting the spring meeting
- Betsy Bombick & RAI: Supporting the spring meeting
- Wendy Wagstaff & Alex Hauleithner: Statistical Analysis
- Elisabeth Weber (JTI/Oekolab): Study Coordinator of MN study
- T. Fukushima, Y. Sawamoto, K. Erami : Literature Review, Cigarette preparation & shipment, Nicotine & Water Analysis
- Monica Lee (ALCS), Jacqueline Miller Holt (JTI): Regulatory Monitoring

Acknowledgement

Sincere thanks to the members of the IVT SG for their contributions

IVT SG Report CORESTA Congress, Berlin - 161013